【题目】已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:
(1)如图①,求证:OC∥AB;
(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,
①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);
②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.
![]()
参考答案:
【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°.
【解析】
(1)只要证明∠COA+∠OAB=180°即可;
(2)Ⅰ)如图②,根据∠EOF=∠COF-∠COE,只要求出∠COF,∠COE即可;
Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,构建方程即可解决问题;
(1)∵BC∥OA,
∴∠C+∠COA=180°,∠BAO+∠ABC=180°,
∵∠C=∠BAO=100°,
∴∠COA=∠ABC=80°,
∴∠COA+∠OAB=180°,
∴OC∥AB.
(2)Ⅰ)∵∠AOB=∠EOB=30°,∠AOC=50°,
∴∠COE=80°﹣60°=20°,∠COB=80°﹣30°=50°,
∵CF平分∠COB,
∴∠COF=
∠COB=25°,
∴∠EOF=25°﹣20°=5°,
Ⅱ)设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,
∵∠AOB+∠BOC+∠OCB=180°,
∴4x+6x+100°=180°,
∴x=8°,
∴∠ABO=∠BOC=6x=48°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O在直线AB上,OD是∠AOC的平分线,射线OE在∠BOC内.
(1)图中有多少个小于180°的角?
(2)若OE平分∠BOC,求∠DOE的度数;
(3)若∠COE=2∠BOE,∠DOE=108°,求∠COE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.

(1)请将条形统计图补充完整;
(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).

(1)写出点A、B的坐标:
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).
(3)△ABC的面积为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】以下四个命题中真命题是( )
①三角形有且只有一个内切圆;
②四边形的内角和与外角和相等;
③顺次连接四边形各边中点所得的四边形一定是菱形;
④一组对边平行且一组对角相等的四边形是平行四边形.
A.①②
B.③④
C.①②④
D.②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴的单位长度为1,如果P,Q表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )

A. P B. R C. Q D. T
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.
根据阅读材料与你的理解回答下列问题:
(1)数轴上表示3与﹣2的两点之间的距离是 .
(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为 .
(3)代数式|x+8|可以表示数轴上有理数x与有理数 所对应的两点之间的距离;若|x+8|=5,则x= .
(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.

相关试题