【题目】开学初,李芳和王平去文具店购买学习用品,李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本.
(1)求每支钢笔和每本笔记本的价格;
(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔笔记本共36件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不多于钢笔数的2倍,共有多少种购买方案?请你一一写出.
参考答案:
【答案】(1)每支钢笔9元,每本笔记本3元;(2)共有4种购买方案,见解析.
【解析】
(1)设每支钢笔x元,每本笔记本y元,根据“李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买钢笔m支,则购买笔记本(36m)本,根据奖品的总价不超过200元及笔记本数不多于钢笔数的2倍,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.
解:(1)设每支钢笔x元,每本笔记本y元,
依题意,得:
,
解得:
,
答:每支钢笔9元,每本笔记本3元;
(2)设购买钢笔m支,则购买笔记本(36m)本,
依题意,得:
,
解得:
.
∵m为整数,
∴m=12,13,14,15.
∴共有4种购买方案,
方案1:购买12支钢笔,24本笔记本;
方案2:购买13支钢笔,23本笔记本;
方案3:购买14支钢笔,22本笔记本;
方案4:购买15支钢笔,21本笔记本.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m, 就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:
人
测试成绩
题目
甲
乙
丙
文化课知识
74
87
69
面试
58
74
70
平时表现
87
43
65
(1)按照平均成绩甲、乙、丙谁应被录取?
(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.
(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是 袋;(用含x的代数式表示)
(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在平面直角坐标系中,点A在X轴的正半轴,OA=8 ,点B在第一象限,∠AOB=60°,AB⊥OB垂足为B, 点D、C分别在边OB、OA上,且OD=AC=t,以OD、OC为边作平行四边形OCED,DE交直线AB为F,CE交直线AB为点G.
(1) 当t=2时, 则E的坐标为
(2) 若ΔDFC的面积为
,求t的值。(3) 当D、 B 、G、 E四点为顶点的四边形为平行四边形时,在Y轴上存在点M,过点M作FC的平行线交直线OB为点N,若以M、 N、 F、 C为顶点的四边形也是平行四边形,则点M的坐标为 (直接写出答案)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取
,
)
相关试题