【题目】在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数. ![]()
参考答案:
【答案】解:方法一:连接BD.
∵AB是⊙O直径,
∴BD⊥AD.
又∵CF⊥AD,
∴BD∥CF,
∴∠BDC=∠C.
又∵∠BDC=
∠BOC,
∴∠C=
∠BOC.
∵AB⊥CD,
∴∠C=30°,
∴∠ADC=60°.
方法二:设∠D=x,
∵CF⊥AD,AB⊥CD,∠A=∠A,
∴△AFO∽△AED,
∴∠D=∠AOF=x,
∴∠AOC=2∠ADC=2x,
∴x+2x=180,
∴x=60,
∴∠ADC=60°.
![]()
![]()
【解析】连接BD,根据平行线的性质可得:BD∥CF,则∠BDC=∠C,根据圆周角定理可得∠BDC=
∠BOC,则∠C=
∠BOC,根据直角三角形的两个锐角互余即可求解.
【考点精析】通过灵活运用垂径定理,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和妹妹做游戏:在一个不透明的箱子里放入20张纸条(除所标字母外其余相同),其中12张纸条上字母为A,8张纸条上的字母为B,将纸条摇匀后任意摸出一张,如果摸到纸条上的字母为A,则小明胜;如果摸到纸条上的字母为B,则妹妹胜.
(1)这个游戏公平吗?请说明理由;
(2)若妹妹在箱子中再放入3张与前面相同的纸条,所标字母为B,此时这个游戏对谁有利? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.

(1)△BCD的形状为;
(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;
(3)当点F落在边AC上时,若AC=6,请直接写出DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂沿路护栏的纹饰部分是由若干个和菱形ABCD(如图①)全等的图案组成的,每增加一个菱形,纹饰长度就增加dcm(如图②).已知菱形ABCD的边长为6
cm,∠BAD=60°.(1)求AC的长;
(2)若d=15cm,纹饰总长度L为3918cm,则需要多少个这样的菱形图案?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,AB=4cm,线段AB上一动点D,以1cm/s的速度从点A出发向终点B运动.过点D作DE⊥AB,交折线AC﹣CB于点E,以DE为一边,在DE左侧作正方形DEFG.设运动时间为x(s)(0<x<4).正方形DEFG与△ABC重叠部分面积为y(cm2).

(1)当x=s时,点F在AC上;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设正方形DEFG的中心为点O,直接写出运动过程中,直线BO平分△ABC面积时,自变量x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其 余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:
(1)菜地的长a= m,宽b= m;
(2)菜地面积S= m2;
(3)当x=0.5m时,菜地面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.
(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.
(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.
(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.


相关试题