【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,AB=4cm,线段AB上一动点D,以1cm/s的速度从点A出发向终点B运动.过点D作DE⊥AB,交折线AC﹣CB于点E,以DE为一边,在DE左侧作正方形DEFG.设运动时间为x(s)(0<x<4).正方形DEFG与△ABC重叠部分面积为y(cm2).![]()
(1)当x=s时,点F在AC上;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设正方形DEFG的中心为点O,直接写出运动过程中,直线BO平分△ABC面积时,自变量x的取值范围.
参考答案:
【答案】
(1)![]()
(2)解:①如图2中,当0<x≤2时,重叠部分是△ADE,
∵∠C=90°,AC=BC,
∴∠CAB=∠AED=45°,
∴AD=DE=x,
∴y=S△ADE=
x2,
②如图3中,当2<x≤
时,重叠部分是五边形MNEDG.
![]()
易知FG=GD=DE=DB=4﹣x,MG=AG=x﹣(4﹣x)=2x﹣4,
∴FM=FG﹣MG=(4﹣x)﹣(2x﹣4)=8﹣3x=FN,
∴y=S正方形DEFG﹣S△FMN=(4﹣x)2﹣
(8﹣3x)2=﹣
x2+16x﹣16,
③当
<x<4时,重叠部分是正方形DEFG,
![]()
y=(4﹣x)2=x2﹣8x+16.
综上所述,y= ![]()
(3)解:如图5中,当2≤x<4时,延长BO交AC于M.
![]()
∵OE=OG,EG∥AC,
∴
=
=
,
∴CM=AM,
∴直线OB平分△ABC的面积.
∴当2≤x<4时,直线OB平分△ABC的面积
【解析】解:(1)如图1中,当点F在AB上时,易证AG=GE=DG=DB=
,
![]()
∴运动时间x=
=
,
所以答案是
.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.

(1)△BCD的形状为;
(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;
(3)当点F落在边AC上时,若AC=6,请直接写出DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂沿路护栏的纹饰部分是由若干个和菱形ABCD(如图①)全等的图案组成的,每增加一个菱形,纹饰长度就增加dcm(如图②).已知菱形ABCD的边长为6
cm,∠BAD=60°.(1)求AC的长;
(2)若d=15cm,纹饰总长度L为3918cm,则需要多少个这样的菱形图案?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其 余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:
(1)菜地的长a= m,宽b= m;
(2)菜地面积S= m2;
(3)当x=0.5m时,菜地面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.
(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.
(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.
(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.


-
科目: 来源: 题型:
查看答案和解析>>【题目】在实数范围内定义一种运算“*”,其运算法则为a*b=a2﹣ab.根据这个法则,下列结论中正确的是_______.(把所有正确结论的序号都填在横线上)
①
*
=2﹣
;②若a+b=0,则a*b=b*a;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1=
,x2=
.
相关试题