【题目】如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( ) ![]()
A.2.3
B.2.4
C.2.5
D.2.6
参考答案:
【答案】B
【解析】解:在△ABC中,
∵AB=5,BC=3,AC=4,
∴AC2+BC2=32+42=52=AB2 ,
∴∠C=90°,
如图:设切点为D,连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵S△ABC=
ACBC=
ABCD,
∴ACBC=ABCD,
即CD=
=
=
,
∴⊙C的半径为
,
故选B.![]()
【考点精析】关于本题考查的切线的性质定理,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AE﹕EB=1﹕2,

(1)求△AEF与△CDF的周长的比;
(2)如果S△AEF=5cm2 , 求S△CDF . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C两点同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动.

(1)P、Q两点从出发开始,经过几秒时,四边形PBCQ的面积为33cm2?
(2)P、Q两点从出发开始,经过几秒时,点P和点Q的距离为10cm? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.

(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:△ADE∽△DCF;
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,
成立?并证明你的结论;
(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。

(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?
(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.
相关试题