【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早
小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题: ![]()
(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.
参考答案:
【答案】
(1)解:慢车的速度=180÷(
﹣
)=60千米/时,
快车的速度=60×2=120千米/时
![]()
(2)解:快车停留的时间:
﹣
×2=
(小时),
+
=2(小时),即C(2,180),
设CD的解析式为:y=kx+b,则
将C(2,180),D(
,0)代入,得
,
解得
,
∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤
)
(3)解:相遇之前:120x+60x+90=180,
解得x=
;
相遇之后:120x+60x﹣90=180,
解得x=
;
快车从甲地到乙地需要180÷120=
小时,
快车返回之后:60x=90+120(x﹣
﹣
)
解得x= ![]()
综上所述,两车出发后经过
或
或
小时相距90千米的路程
【解析】(1)根据路程与相应的时间,求得慢车的速度,再根据慢车速度是快车速度的一半,求得快车速度;(2)先求得点C的坐标,再根据点D的坐标,运用待定系数法求得CD的解析式;(3)分三种情况:在两车相遇之前;在两车相遇之后;在快车返回之后,分别求得时间即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交直线BC于点E,过点A作直线CD的垂线交直线CD于点F,若AB=4,BC=6,则CE+CF的值为______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.
①
②
③
④
我选择第 个方程。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,BC、AD是⊙O的切线,切点分别为B、A,过点O作EC⊥OD,EC交BC于点C,交AD于点E.

(1)求证:CE是⊙O的切线;
(2)若AE=1,AD=3,求阴影部分的面积.(结果保留π) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)如图②,当点P与点C重合时,求证:△BOG≌△POE;
(2)通过观察、测量、猜想:
= , 并结合图①证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ACB=a,直接写出
的值,为 . (用含a的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:
(1)请你根据左图填写右表:
销售公司
平均数
方差
中位数
众数
甲
9
乙
9
17.0
8

(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:
①从平均数和方差结合看;
②从折线图上甲、乙两个汽车销售公司销售数量的趋势
看(分析哪个汽车销售公司较有潜力).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别延长□ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.
求证:CG∥AH.

相关试题