【题目】如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是 . ![]()
参考答案:
【答案】
π
【解析】解:如图点P运动的路径是以G为圆心的弧
,在⊙G上取一点H,连接EH、FH.
∵四边形AOCB是正方形,
∴∠AOC=90°,
∴∠AFP=
∠AOC=45°,
∵EF是⊙O直径,
∴∠EAF=90°,
∴∠APF=∠AFP=45°,
∴∠H=∠APF=45°,
∴∠EGF=2∠H=90°,
∵EF=4,GE=GF,
∴EG=GF=2
,
∴
的长=
=
π.
所以答案是
π.![]()
【考点精析】本题主要考查了正方形的性质和旋转的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AD=2
,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:用2辆A型车和1辆B型车装满货物一次可运货10t;用1辆A型车和2辆B型车装满货物一次可运货11t.某物流公司现有35t货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题: 如图1,在矩形
中,对角线
、
相交于点
,且
,点
、
、
分别是
、
、
的中点,连接所
、
、
.求证:
是等边三角形.小明经探究发现,连接
、
(如图2),从而可证
,
,使问题得到解决.
(1)请你按照小明的探究思路,完成他的证明过程;
参考小明思考问题的方法或用其他的方法,解决下面的问题:
(2)如图3,在四边形
中,
,
, 对角线
、
相交于点
,且
(
),点
、
、
分别是
、
、
的中点,连接
、
、
.①否存在与
相等的线段?若存在,请找出并证明;若不存在,说明理由.②求
的度数.(用含
的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】我市在招商引资期间,把已经破产的油泵厂出租给外地某投资商,该投资商为了减少固定资产投资,将原来400平方米的正方形场地建成300平方米的长方形场地,并且长、宽的比为5:3,并且把原来的正方形铁栅栏围墙全部利用,围成新场地的长方形围墙,请问这些铁栅栏是否够用?
相关试题