【题目】如图,在菱形ABCD中,AD=8,
ABC=1200,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为_________.
![]()
参考答案:
【答案】4
.
【解析】试题分析:连接BD,DE,则DE的长即为PE+PB的最小值,再根据菱形ABCD中,∠ABC=120°得出∠BCD的度数,进而判断出△BCD是等边三角形,故△CDE是直角三角形,根据勾股定理即可得出DE的长.
解:连接BD,DE,
∵四边形ABCD是菱形,
∴B、D关于直线AC对称,
∴DE的长即为PE+PB的最小值,
∵ABC=120°,
∴∠BCD=60°,
∴△BCD是等边三角形,
∵E是BC的中点,
∴DE⊥BC,CE=
BC=
×8=4,
∴DE=
=
=4
.
故答案为:4
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.

(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=kx2﹣2kx﹣3k交x轴于A、B两点,交y轴于点C,已知OC=OB.

(1)求抛物线解析式;
(2)在直线BC上求点P,使PA+PO的值最小;
(3)抛物线上是否存在点Q,使△QBC的面积等于6?若存在,请求出Q的坐标;若不存在请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:

(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;
(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣3,3).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).

(1)求∠EBP的度数;
(2)求点D运动路径的长;
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
相关试题