【题目】如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).
![]()
(1)若△BDE是以BE为底的等腰三角形,求t的值;
(2)若△BDE为直角三角形,求t的值;
(3)当S△BCE≤
时,求所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2﹣
).
参考答案:
【答案】(1)
;(2) t的值为
秒或3秒;(3) t的取值范围是6﹣3
≤t≤3.
【解析】
(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由AB=3
,可得t的值;
(2)分两种情况:
①当∠DEB=90°时,如图2,连接AE,根据AB=3t=3
,可得t的值;
②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED是平行四边形,所以AD=CE=3,即t=3;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,
②当△BCE在BC的上方时,
分别计算当高为3时对应的t的值即可得结论.
解:(1)如图1,连接AE,
由题意得:AD=t,
∵∠CAB=90°,∠CBA=30°,
∴BC=2AC=6,
∴AB=
=3
,
∵点A、E关于直线CD的对称,
∴CD垂直平分AE,
∴AD=DE,
∵△BDE是以BE为底的等腰三角形,
∴DE=BD,
∴AD=BD,
∴t=AD=
;
(2)△BDE为直角三角形时,分两种情况:
①当∠DEB=90°时,如图2,连接AE,
∵CD垂直平分AE,
∴AD=DE=t,
∵∠B=30°,
∴BD=2DE=2t,
∴AB=3t=3
,
∴t=
;
②当∠EDB=90°时,如图3,
连接CE,
∵CD垂直平分AE,
∴CE=CA=3,
∵∠CAD=∠EDB=90°,
∴AC∥ED,
∴∠CAG=∠GED,
∵AG=EG,∠CGA=∠EGD,
∴△AGC≌△EGD,
∴AC=DE,
∵AC∥ED,
∴四边形CAED是平行四边形,
∴AD=CE=3,即t=3;
综上所述,△BDE为直角三角形时,t的值为
秒或3秒;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,
此时S△BCE=
AEBH=
×3×3=
,
易得△ACG≌△HBG,
∴CG=BG,
∴∠ABC=∠BCG=30°,
∴∠ACE=60°﹣30°=30°,
∵AC=CE,AD=DE,DC=DC,
∴△ACD≌△ECD,
∴∠ACD=∠DCE=15°,
tan∠ACD=tan15°=
=2﹣
,
∴t=6﹣3
,
由图形可知:0<t<6﹣3
时,△BCE的BH越来越小,则面积越来越小,
②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,
此时S△BCE=
CEDE=
×3×3=
,此时t=3,
综上所述,当S△BCE≤
时,t的取值范围是6﹣3
≤t≤3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为全力助推句容建设,大力发展句容旅游,某公司拟派A、B两个工程队共同建设某区域的绿化带.已知A工程队2人与B工程队3人每天共完成310米绿化带,A工程队的5人与B工程队的6人每天共完成700米绿化带.
(1)求A队每人每天和B队每人每天各完成多少米绿化带;
(2)该公司决定派A、B工程队共20人参与建设绿化带,若每天完成绿化带总量不少于1480米,且B工程至少派出2人,则有哪几种人事安排方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,先描出点
,点
.
(1)描出点
关于
轴的对称点
的位置,写出
的坐标 ;(2)用尺规在
轴上找一点
,使
的值最小(保留作图痕迹);(3)用尺规在
轴上找一点
,使
(保留作图痕迹). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,直线l:y=
x+m交x轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CD与x轴平行,且S△ACD:S△ABD=3:5.(1)求点A的坐标;
(2)求此二次函数的解析式;
(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A坐标(6,0),点B在y轴上,点C在第三象限角平分线上,动点P、Q同时从点O出发,点P以1cm/s 的速度沿O→A→B匀速运动到终点B;点Q沿O→C→B→A运动到终点A,点Q在线段OC、CB、BA上分别作匀速运动,速度分别为V1cm/s、V2cm/s、V3cm/s.设点P运动的时间为t(s),△OPQ的面积为S(cm2),已知S与t之间的部分函数关系如图(2)中的曲线段OE、曲线段EF和线段FG所示.

(1)V1= ,V2= ;
(2)求曲线段EF的解析式;
(3)补全函数图象(请标注必要的数据);
(4)当点P、Q在运动过程中是否存在这样的t,使得直线PQ把四边形OABC的面积分成11:13两部分,若存在直接写出t的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知等腰直角
中,BD为斜边上的中线,E为DC上的一点,且
于G,AG交BD于F.(1)求证:AF=BE.
(2)如图②,当点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).
(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2
(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.
请在坐标轴上找一点C,使△ABC为等腰三角形.
写出一个满足条件的在x轴上的点的坐标: ;
写出一个满足条件的在y轴上的点的坐标: ,这样的点有 个.

相关试题