【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 . ![]()
参考答案:
【答案】![]()
【解析】∵∠ACB=90°,∠ABC=30°,AC=2,
∴∠A=90°﹣∠ABC=60°,AB=4,BC=2
,
∵CA=CA1,
∴△ACA1是等边三角形,AA1=AC=BA1=2,
∴∠BCB1=∠ACA1=60°,
∵CB=CB1,
∴△BCB1是等边三角形,
∴BB1=2
,BA1=2,∠A1BB1=90°,
∴BD=DB1=
,
∴A1D=
=
,
故答案为:
.
由旋转的性质及等边三角形的性质可得△BCB1是等边三角形,∠A1BB1=90°,利用勾股定理可求出A1D长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:
(1)t为______时,△PBQ是等边三角形?
(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】动手操作:
如图,已知AB∥CD,点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以点E,F为圆心,大于
EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.问题解决:
(1)若∠ACD=78°,求∠MAB的度数;
(2)若CN⊥AM,垂足为点N,求证:△CAN≌△CMN.
实验探究:
(3)直接写出当∠CAB的度数为多少时?△CAM分别为等边三角形和等腰直角三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l∥AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABCD的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3
或7.其中正确的是( )
A. ①②④ B. ①③④ C. ①②③ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】为增加环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收 集的数据绘制了如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:

(1)本次抽样调查了多少个家庭?
(2)将图①中的频数分布直方图补充完整;
(3)求用车时间在 1 小时~1.5 小时的部分对应的扇 形圆心角的度数;
(4)若该社区有车家庭有 1 600 个,请你估计该社区用车时间不超过 1.5 小时的约有多少个家庭.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:

(1)这次被调查的总人数是______;
(2)补全条形统计图;
(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;
(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.
相关试题