【题目】如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是( )
![]()
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
参考答案:
【答案】C
【解析】
全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.
A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;
B、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;
C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;
D、∵OB=OC,
∴∠DBC=∠ACB,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,
∴∠A=∠D,
∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,
∴能推出△ABC≌△DCB,故本选项错误;
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.如图2.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2次变换后,骰子朝上一面的点数是________;连续完成2019次变换后,骰子朝上一面的点数是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线AB上 一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC的角平分线OE;

(1)按要求完成画图;
(2)通过观察、测量你发现∠DOE= °;
(3)补全以下证明过程:
证明:∵OD平分∠AOC(已知)
∴∠DOC= ∠AOC( )
∵OE平分∠BOC(已知)
∴∠EOC= ∠BOC( )
∵∠AOC+∠BOC= °
∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= °.
-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:
船型
两人船(仅限两人)
四人船(仅限四人)
六人船(仅限六人)
八人船(仅限八人)
每船租金(元/小时)

100
130

(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:
①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;
②租2只两人船,3只八人船,游玩一个小时,共需花费630元.
请根据以上信息,求出两人船项目和八人船项目每小时的租金;
(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为 1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动.连接OQ、OP(如图),则阴影部分面积S1、S2的大小关系是( )

A.S1=S2
B.S1≤S2
C.S1≥S2
D.先S1<S2 , 再S1=S2 , 最后S1>S2 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读完成问题:
数轴上,已知点A、B、C.其中,C为线段AB的中点:
(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为 , C点表示的数为 ;

(2)若点A表示的数为-1,C点表示的数为2,则点B表示的数为 ;
(3)若点A表示的数为t,点B表示的为t+2,则线段AB的长为 ,若C点表示的数为2,则t= ;
(4)点A表示的数为
,点B表示的为
,C点位置在-2至3之间(包括边界点),若C点表示的数为
,则
+
+
的最小值为 ,
+
+
的最大值为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是( )

A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
相关试题