【题目】如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为( ) ![]()
A.(1,
)
B.(
,
)
C.(
,2
)
D.(
,2
)
参考答案:
【答案】B
【解析】解:∵A(﹣4,0),B(0,2), ∴OA=4,OB=2,
∵△COB∽△CAO,
∴
=
=
=
=
,
∴CO=2CB,AC=2CO,
∴AC=4CB,
∴
=
,
过点C作CD⊥y轴于点D,![]()
∵AO⊥y轴,
∴AO∥CD,
∴△AOB∽△CDB,
∴
=
=
=
,
∴CD=
AO=
,
BD=
OB=
,
∴OD=OB+BD=2+
=
,
∴点C的坐标为(
,
).
故选B.
根据相似三角形对应边成比例求出CB、AC的关系,从而得到
=
,过点C作CD⊥y轴于点D,然后求出△AOB和△CDB相似,根据相似三角形对应边成比例求出CD、BD,再求出OD,最后写出点C的坐标即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )

A.6
B.7
C.8
D.9 -
科目: 来源: 题型:
查看答案和解析>>【题目】(感知)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BEE+∠DCE=∠AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):
解:如图①,过点E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠FGC+∠DCE=360°;
(应用)点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG= °.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为( )

A.9环与8环
B.8环与9环
C.8环与8.5环
D.8.5环与9环 -
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上,老师出了一道题:化简
[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3].
小明同学马上举手,下面是小明的解题过程:
[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3]
=[8(a+b)5-4(a+b)4+(a+b)3]÷8(a+b)3
=(a+b)2-
(a+b)+
.小亮也举起了手,说小明的解题过程不对,并指了出来.老师肯定了小亮的回答.你知道小明错在哪儿吗?请指出来,并写出正确解答.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):
选择意向
所占百分比
文学鉴赏
a
科学实验
35%
音乐舞蹈
b
手工编织
10%
其他
c
根据统计图表中的信息,解答下列问题:

(1)本次调查的学生总人数为;
(2)补全条形统计图;
(3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为;
(4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.

(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
相关试题