【题目】在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0). ![]()
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
参考答案:
【答案】
(1)解:如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴
![]()
(2)解:如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意
![]()
【解析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.
-
科目: 来源: 题型:
查看答案和解析>>【题目】填写理由:如图所示
∵DF∥AC(已知),
∴∠D+∠DBC=180°.( )
∵∠C=∠D(已知),
∴∠C+ =180°.( )
∴DB∥EC( )
∴∠D=∠CEF.( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,E是AD的中点,延长CB到点F,使
,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;
(2)若AB=6,AD=8,∠C=60°,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】学校计划从某苗木基地购进A、B两咱树苗共200棵绿化校园。已知购买了3棵A种树苗和5棵B种树苗共需700元;购买2棵A种树苗和1棵B种树苗共需280元.
(1)每棵A种树苗、B种树苗各需多少元?
(2)学校除支付购买树苗的费用外,平均每棵树苗还需支付运输及种植费用20元。设学校购买B种树苗x棵,购买两种树苗及运输、种植所需的总费用为y元,求y与x的函数关系;
(3)在(2)的条件下,若学校用于绿化的总费用在22400元限额内,且购买A种树苗的数量不少于B种树苗的数量,请给出一种费用最省的方案,并求出该方案所需的费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.

根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数
=7,方差
=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定? -
科目: 来源: 题型:
查看答案和解析>>【题目】受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
成本(元/件)
56
58
60
62
64
66
68
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为O.
(1)求证:CE=FG;
(2)如图2,连接OB,若AD=3DE,∠OBC=2∠DCE。
求
的值;若AD=3,则OE的长为_________(直接写出结果).

相关试题