【题目】一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”. 例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.
(1)直接写出:最小的“和平数”是 , 最大的“和平数”是;
(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”. 例如:1423与4132为一组“相关和平数”
求证:任意的一组“相关和平数”之和是1111的倍数.
参考答案:
【答案】
(1)1001;9999
(2)解:设这个“和平数”为
,
则d=2a,a+b=c+d,b+c=12k,
∴2c+a=12k,
即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),
①、当a=2,d=4时,2(c+1)=12k,
可知c+1=6k且a+b=c+d,
∴c=5则b=7,
②、当a=4,d=8时,
2(c+2)=12k,
可知c+2=6k且a+b=c+d,
∴c=4则b=8,
综上所述,这个数为2754和4848
(3)解:设任意的两个“相关和平数”为
,
(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),
则
+
=1100(a+b)+11(c+d)=1111(a+b),
即两个“相关和平数”之和是1111的倍数
【解析】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999, 故答案为:1001,9999;
(1)根据题意即可得到结论;(2)设这个“和平数”为
,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7,②、当a=4,d=8时,得到c=4则b=8,于是得到结论;(3)设任意的两个“相关和平数”为
,
(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到
+
=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(2a﹣b)2﹣2b(b﹣2a)
(2)(x﹣
)÷
﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=
(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=
,OA=2. 
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.
(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;
(2)如图2,若A、C、F、E共线,连接CD,求证:DC=
DF. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=﹣
x2+
x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.

(1)求点D的坐标;
(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+
BM的值最小,求点M的坐标及PM+
BM的最小值;
(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=
在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为( ) 
A.9
B.6
C.3
D.3
相关试题