【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=
在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为( ) ![]()
A.9
B.6
C.3
D.3 ![]()
参考答案:
【答案】C
【解析】解:设点B(a,b), ∵△OAC和△BAD都是等腰直角三角形,
∴OA=
AC,AB=
AD,OC=AC,AD=BD,
∵OA2﹣AB2=18,
∴2AC2﹣2AD2=18即AC2﹣AD2=9
∴(AC+AD)(AC﹣AD)=9,
∴(OC+BD)CD=9,
∴ab=9,
∴k=9,
∴反比例函数y=
,
∵△OAC是等腰直角三角形,
∴直线OA的解析式为y=x,
解
得
或
,
∴P(3,3),
故选C.
先设点B坐标,再由等腰直角三角形的性质得出OA=
AC,AB=
AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函数的解析式,然后联立方程,解方程即可求得P的横坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”. 例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.
(1)直接写出:最小的“和平数”是 , 最大的“和平数”是;
(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”. 例如:1423与4132为一组“相关和平数”
求证:任意的一组“相关和平数”之和是1111的倍数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=﹣
x2+
x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.

(1)求点D的坐标;
(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+
BM的值最小,求点M的坐标及PM+
BM的最小值;
(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是 .
(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F. 请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)

(1)结论:AF= .
(2)证明结论。
相关试题