【题目】(8分)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点距离AB=|a﹣b|.已知数轴上两点A,B对应的数分别为-1,3.点P为数轴上一动点,其对应的数为x,A,B两点之间的距离是 .设点P在数轴上表示的数为x,则x与-4之间的距离表示为 .
.若点P到点A、点B的距离相等,则点P对应的数为 .
若点P到点A、点B的距离之和为8,则点P对应的数为 .
现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向左运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?
参考答案:
【答案】(1)4;(2) |x+4|;(3)1;(4) -3或5;(5)-0.2或4.6
【解析】
(1)(2)在数轴上A、B两点之间的距离为AB= |a- b|,依此即可求解;
(3)根据中点坐标公式即可求解;
(4)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解;
(5)分两种情况:点A在点B的左边,点A在点B的右边,进行讨论即可求解.
(1)A,B两点之间的距离是3-(-1)=4;
(2)x与-4之间的距离表示为|x-(-4)|= |x+4|;
(3)(-1+3)÷2= 1,∴故点P对应的数是1;
(4)点P在点A的左边,
x的值是-1-(8-4)÷2=-3;点P在点B的右边,
x的值是3 +(8-4)÷2=5;故x的值是-3或5;
(5)点A在点B的左边,(4-3)÷ (2-0.5)×2+(-1)=
,∴点A所对应的数是![]()
点A在点B的右边,(4 +3) ÷(2-0.5)×2+(-1)=8
;点A所对应的数是8
.故点A所对应的数是
或8
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.

(1)当∠BAC=∠MBN=90°时,
①如图a,当θ=45°时,∠ANC的度数为△;
②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+3经过点B(﹣1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.

(1)求此抛物线的解析式;
(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形?请直接写出符合条件的t值. -
科目: 来源: 题型:
查看答案和解析>>【题目】生活与数学
(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是 ;

(2)玛丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是 ;

(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是 ;

(4)某月有5个星期日的和是75,则这个月中最后一个星期日是 号;
(5)若干个偶数按每行8个数排成下图:
①图中方框内的9个数的和与中间的数的关系是 ;

②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是 ;

③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是( )

A.①④
B.①③
C.②④
D.①② -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=
,则∠D的度数是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=
.
如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.
相关试题