【题目】如图,在Rt△ABC中,∠B=90°,BC=5
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)AC的长是 ,AB的长是 .
(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.
(3)当t为何值,△BEF的面积是2
?
![]()
参考答案:
【答案】(1)10;5;(2)EF与AD平行且相等.(3)3.
【解析】分析:(1)、根据含有30°角的直角三角形的性质以及BC的长度求出AC和AB的长度;(2)、根据运动的速度得出AE=DF,根据垂直得出AE∥DF,从而得出四边形AEFD为平行四边形,从而得出EF和AD的关系;(3)、根据运动的速度用含t的代数式表示BE和BF的长度,然后根据直角三角形的面积计算法则得出t的值.
详解:(1)解:∵在Rt△ABC中,∠C=30°, ∴AC=2AB,
根据勾股定理得:AC2﹣AB2=BC2, ∴3AB2=75, ∴AB=5,AC=10;
(2)EF与AD平行且相等.
证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t, ∴DF=t. 又∵AE=t,
∴AE=DF, ∵AB⊥BC,DF⊥BC, ∴AE∥DF.
∴四边形AEFD为平行四边形. ∴EF与AD平行且相等.
(3)解:∵在Rt△CDF中,∠A=30°, ∴DF=
CD, ∴CF=
t,
又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5
﹣
t,
∴
, 即:
,
解得:t=3,t=7(不合题意舍去), ∴t=3.
故当t=3时,△BEF的面积为2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。

(1)求证:OE=OF;
(2)若BC=
,求AB的长。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.

(1)求证:OD∥AC;
(2)若BC=8,DE=3,求⊙O的直径. -
科目: 来源: 题型:
查看答案和解析>>【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:
摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为8”出现的频数
2
10
13
24
30
37
58
82
110
150
“和为8”出现的频率
0.20
0.50
0.43
0.40
0.33
0.31
0.32
0.34
0.33
0.33
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是;
(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能. -
科目: 来源: 题型:
查看答案和解析>>【题目】“校园安全”受到全社会的广泛关注,信丰县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图所示的两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形圆心角是 度;
(2)请补全条形统计图;
(3)若该中学共有学生1200人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列命题:
①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;
②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:
,则这个三角形是直角三角形.其中,正确命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?

相关试题