【题目】如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.
(1)求S关于x的函数解析式;
(2)当EFGH是正方形时,求S的值.
![]()
参考答案:
【答案】(1)矩形EFGH的面积为S=-
x2+
x(0<x<1);(2)S=
.
【解析】
(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=
BE,即可求出答案;
(2)根据正方形的性质求出x,再求出面积即可.
(1)连接BD交EF于点M,
![]()
∵四边形ABCD是菱形,
∴AB=AD,
∵AE=AH,
∴EH∥BD∥FG,BD⊥EF,
∵在菱形ABCD中,∠A=60°,AE=AH,
∴△AEH是等边三角形,
∴∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,
∴EM=
BE,
∴EF=
BE,
∵AB=1,AE=x,
∴矩形EFGH的面积为S=EH×EF=x×
(1-x)=-
x2+
x(0<x<1);
(2)当矩形EFGH是正方形时,EH=EF,
即x=
(1-x),
解得:x=
,
所以S=x2=(
)2=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与反比例函数
的图象交于A(-1,3),B(-3,n)两点,直线
与
轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:
(1)图中的自变量是______,因变量是______;
(2)无人机在75米高的上空停留的时间是______分钟;
(3)在上升或下降过程中,无人机的速度______为米/分;
(4)图中a表示的数是______;b表示的数是______;
(5)图中点A表示______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1,当点A1落在AC上时.
(1)如图,若∠CAB=60°,求证:四边形ABD1C为平行四边形;
(2)如图,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校2019学年举行席地绘画大赛.共收到绘画作品480件,其中的优秀作品评出了一、二、三等奖.
占获奖总数的几分之几
获奖作品的件数
一等奖

b
二等奖

c
三等奖
a
96
(1)则a= ;b= ;c= ;
(2)学校决定为获一等奖同学每人购买一个书包,获得二等奖同学每人购买一个文具盒,获得三等奖同学每人购买一支钢笔,并且每位获奖同学颁发一个证书,已知文具盒单价是书包单价的
,证书的单价是文具盒单价的
,钢笔的单介是文具盒单价的
,学校购买书包、文具盒、钢笔共用4000元,那么学校购买证书共用了多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;
(2)若PD=
,求⊙O的直径. -
科目: 来源: 题型:
查看答案和解析>>【题目】一辆货车从超市出发,向东走了2
到达小刚家,继续向东走了3
到达小红家,又向西走了9
到达小英家,最后回到超市.(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1
,画出数轴,在数轴上表示出小刚家、小红家、小英家的位置;(2)小英家距小刚家有多远?
(3)货车一共行驶了多少千米?
相关试题