【题目】操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:
说明:
方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点
纸片利用率=
×100%
发现:
![]()
(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
说明:方案三中的每条边均过其中两个正方形的顶点.
参考答案:
【答案】
(1)
解:发现:小明的这个发现正确.
理由:
解法一:如图一:连接AC、BC、AB,
![]()
∵AC=BC=
,AB=2![]()
∴AC2+BC2=AB2,
∴∠BCA=90°,
∴AB为该圆的直径.
解法二:如图二
![]()
:连接AC、BC、AB.
易证△AMC≌△BNC,
∴∠ACM=∠CBN.
又∵∠BCN+∠CBN=90°,
∴∠BCN+∠ACM=90°,
即∠BCA=90°,
∴AB为该圆的直径.
(2)
解:如图三:
![]()
∵DE=FH,DE∥FH,
∴∠AED=∠EFH,
∵∠ADE=∠EHF=90°,
∴△ADE≌△EHF(ASA),
∴AD=EH=1.
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
,
∴BC=8,
∴S△ACB=16.
∴该方案纸片利用率=
×100%=
×100%=37.5%;
(3)
解:
![]()
探究:过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H,
设AP=a,
∵PQ∥EK,
易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,
∴AP:AQ=QK:EK=1:2,
∴AQ=2a,PQ=
a,
∴EQ=5a,
∵EC:ED=QE:QK,
∴EC=
a,
则PG=5a+
a=
a,GL=
a,
∴GH=
a,
∵
,
解得:GB=
a,
∴AB=
a,AC=
a,
∴S△ABC=
span> ×AB×AC=
a2,
S展开图面积=6×5a2=30a2,
∴该方案纸片利用率=
×100%=
×100%=49.86%.
【解析】(1)连接AC、BC、AB,由AC=BC=
,AB=
,根据勾股定理的逆定理,即可求得∠BAC=90°,又由90°的圆周角所对的弦是直径,则可证得AB为该圆的直径;(2)首先证得△ADE≌△EHF与△ADE∽△ACB,即可求得AD与BC的长,求得△ABC的面积,即可求得该方案纸片利用率;(3)利用方案(2)的方法,分析求解即可求得答案.
【考点精析】根据题目的已知条件,利用几何体的展开图和勾股定理的概念的相关知识可以得到问题的答案,需要掌握沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:

(1)本次被调查的学生有多少人.
(2)将两幅统计图补充完整.
(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.
(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.

(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市某风景区门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x 的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.

(1)求抛物线解析式;
(2)如图2,当点F恰好在抛物线上时,求线段OD的长; -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,∠A=30°.分别以顶点A、B为圆心,大于
AB为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.下列结论中,错误的是( )
A.直线AB是线段MN的垂直平分线
B.CD=
AD
C.BD平分∠ABC
D.S△APD=S△BCD -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D、E分别是边AB、AC的中点,连接DE,将△ADE沿AB方向平移到△DBF的位置,点D在BC上,已知△ADE的面积为1,则四边形CEDF的面积是 .

相关试题