【题目】(观察探索)用“<”、“>”或“=”完成以下填空,并观察两边算式,探索规律:
![]()
![]()
![]()
![]()
(猜想证明)请用一个含字母a、b的式子表示上以规律,并证明结论的正确性;
(应用拓展)比较代数式m2-3mn+1与mn-4n2的大小,并说明理由.
参考答案:
【答案】(1)>;=;(2)a2+b2≥2ab;(3)m2-3m+1>mn-4n2
【解析】
(1)猜想证明:观察几个式子的规律得到结论:两个数的平方和大于或等于这两个数积的2倍.运用完全平方公式和平方数非负性质可证明这个结论.
(2)运用求差法比较m2-3m+1与
的大小.把 m2-3m+1-(mn-4n2)整理后配方可知其最小值.
解:(1)猜想:
2×(-3) ×4=-24
∴
2×(-3) ×4
=72 2×(-6) ×(-6)=72
∴
=2×(-6) ×(-6)
用字母表示这个规律: a2+b2≥2ab
证明:
=
-2ab+ b2
又
≥0
∴
-2ab+ b2≥0
∴a2+b2≥2ab
(2) 应用拓展:
m2-3m+1-(mn-4n2)
=m2-3m+1-mn+4n2
=m2-4mn+4n2+1
=(m-2n)2+1
∵(m-2n)2≥0
∴(m-2n)2+1>0
所以m2-3m+1>mn-4n2
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=ax﹣a与y=
(a≠0)在同一直角坐标系中的图象可能是( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程解应用题:某校组织七年级师生共300人乘车前往“故乡”农场进行劳动教育活动.
(1)他们早晨8:00从学校出发,原计划当天上午10:00便可以到达“故乡”农场,但实际上他们当天上午9:40便达到了“故乡”农场,已知汽车实际行驶速度比原计划行驶速度快10km/h.求汽车原计划行驶的速度.
(2)到达“故乡”农场后,需要购买门票,已知该农场门票票价情况如右表,该校购买门票时共花了3100元,那么参加此次劳动教育的教师、学生各多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在纸面上有一数轴如图1,根据给出的数轴,解答下面的问题:

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.
(2)请问A,B两点之间的距离是多少?
(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.
(4)折叠纸面.若在数轴上﹣1表示的点与5表示的点重合,回答以下问题:
①10表示的点与数 表示的点重合;
②若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经折叠后重合,求M、N两点表示的数是多少?
(5)如图2,半径为2的圆周上有一点Q落在数轴上A点处,求将圆在数轴上向右滚动(无滑动)一周后点Q所处的位置的点在数轴上所表示的数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=
x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b,c为非零的实数,则
的可能值的个数为( )A. 4 B. 5 C. 6 D. 7
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

相关试题