【题目】已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD的度数与AD的长.
![]()
参考答案:
【答案】∠BAD=60°,AD=8.
【解析】
根据旋转的性质先证明△ADE是等边三角形,由相似三角形的性质可得∠EAD=60°,AD=AE,即可得到∠BAD=∠BAC﹣∠CAD=60°,AD=AE=AC+CE=AC+AB=3+5=8.
∵△ABD≌△ECD,
∴AD=DE,∠BDA=∠DCE,
∴∠BDC=∠ADE=60°,∠ABD=∠ECD,
∵∠BAC=120°,∠BDC=60°,
∴∠BAC+∠BDC=180°,
∴∠ABD+∠ACD=180°,
∴∠ACD+∠ECD=180°,
∴A、C、E共线,
∴△ADE是等边三角形,
∴∠EAD=60°,AD=AE,
∴∠BAD=∠BAC﹣∠CAD=60°,
∴AD=AE=AC+CE=AC+AB=3+5=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).
(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( ),B1( ),C1( );
(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.
(1)求规定如期完成的天数.
(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示)
(I)根据图象,求一次函数y=kx+b的解析式,并写出自变量x的取值范围;
(Ⅱ)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+
x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在
上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A. 正比例函数y=kx(k为常数,k≠0,x>0)
B. 一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C. 反比例函数y=
(k为常数,k≠0,x>0)D. 二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
相关试题