【题目】如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,写出求BE的长的思路.
![]()
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】(1)由平行四边形性质得AB∥CD, 可得∠ABC+∠BCD=180°,又BE,CF分别是∠ABC,∠BCD的平分线,所以∠EBC+∠FCB=90°,可得∠BGC=90°;
(2)作EH∥AB交BC于点H,连接AH交BE于点P.证四边形ABHE是菱形,可知AH,BE互相垂直平分,在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠ABC+∠BCD=180°.
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=
∠ABC,∠FCB=
∠BCD.
∴∠EBC+∠FCB=90°.
∴∠BGC=90°.
即BE⊥CF.
(2)求解思路如下:
a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.
![]()
b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;
c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=
;
d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线
的表达式为
,点A,B的坐标分别为(1,0),(0,2),直线AB与直线
相交于点P.(1)求直线AB的表达式;
(2)求点P的坐标;
(3)若直线
上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下表三行数的规律,回答下列问题:

(1)第1行的第四个数a是多少;第3行的第六个数b是多少;
(2)若第1行的某一列的数为c,则第2行与它同一列的数为多少;
(3)巳知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.

(1)求证:DF是⊙O的切线;
(2)求证:OC2=OEOP;
(3)求线段EG的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】由大小相同(棱长为1分米)的小立方块搭成的几何体如下图.


(1)请在右图的方格中画出该几何体的俯视图和左视图;
(2)图中有 块小正方体,它的表面积(含下底面)为 ;
(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87
89 79 54 88 92 90 87 68 76 94 84 76 69 83 92
乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92
73 76 92 84 57 87 89 88 94 83 85 80 94 72 90

(1)请根据乙校的数据补全条形统计图;
(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;
平均数
中位数
众数
甲校
83.4
87
89
乙校
83.2
(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,
请为他们各写出一条可以使用的理由;
甲校: .乙校: .
(4)综合来看,可以推断出 校学生的数学学业水平更好一些,理由为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A表示数a,点B表示数b,已知a、b满足
.(1)求a、b的值;
(2)若在数轴上存在一点C,使得C到A的距离是C到B的距离的2倍,求点C表示的数;
(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.

相关试题