【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )![]()
A.43
B.45
C.51
D.53
参考答案:
【答案】C
【解析】解:设图形n中星星的颗数是an(n为自然是),
观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,
∴an=2+
.令n=8,则a8=2+
=51.
故选C.
设图形n中星星的颗数是an(n为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“an=2+
”,结合该规律即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“an=2+
”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=﹣2x+4与平面直角坐标系中的x轴、y轴分别交于A、B两点,以AB为边作等腰直角三角形ABC,使得点C与原点O在AB两侧,则点C的坐标为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】
(1)如图1,当tan∠PAB=1,c=4
时,a= , b=;
如图2,当∠PAB=30°,c=2时,a= , b=;
(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)【拓展证明】如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3
,AB=3,求AF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<
),∠AED=∠BCD,求
的值(用含k的式子表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )

A.2n+1
B.n2﹣1
C.n2+2n
D.5n﹣2 -
科目: 来源: 题型:
查看答案和解析>>【题目】我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:
指数运算
21=2
22=4
23=8
…
31=3
32=9
33=27
…
新运算
log22=1
log24=2
log28=3
…
log33=1
log39=2
log327=3
…
根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2
=﹣1.其中正确的是( )
A.①②
B.①③
C.②③
D.①②③ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为2,其面积标记为S1 , 以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 , …,按照此规律继续下去,则S9的值为( )

A.(
)6
B.(
)7
C.(
)6
D.(
)7
相关试题