【题目】问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.
(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 ;
(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 ;
(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.
![]()
(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .
参考答案:
【答案】(1)
;(2)
;(3)见解析;(4)![]()
【解析】
(1)根据三角形外角性质可得;
(2)在四边形
中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;
(3)如下图,根据(1)可得∠1=2∠
,∠2=2∠
,从而推导出关系式;
(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.
(1)∵△
是△EDA折叠得到
∴∠A=∠![]()
∵∠1是△
的外角
∴∠1=∠A+∠![]()
∴
;
(2)∵在四边形
中,内角和为360°
∴∠A+
+∠
∠
=360°
同理,∠A=∠![]()
∴2∠A+∠
∠
=360°
∵∠BDA=∠CEA=180
∴∠1+∠
∠
+∠2=360°
∴
;
(3)数量关系:
理由:如下图,连接![]()
![]()
由(1)可知:∠1=2∠
,∠2=2∠
∴
;
(4)由折叠性质知:∠2=180°-2∠AEF,∠1=180°-2∠BFE
相加得:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在△ABC中,试说明:∠A+∠B+∠C=180°
方法一: 过点A作DE∥BC. 则(填空)
∠B=∠ ,∠C=∠
∵ ∠DAB+∠BAC+ ∠CAE=180°
∴∠A+∠B+∠C=180°
方法二: 过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程 )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.
(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.
(2)画出△DEF关于直线l对称的三角形.
(3)填空:∠C+∠E= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在边长为4cm正方形 ABCD 中,点P从点A出发,沿AB→BC的路径匀速运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时图象如图②所示.当P运动2.5s时,PQ的长为( )


A.
cmB.
cmC.
cmD.
cm -
科目: 来源: 题型:
查看答案和解析>>【题目】九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】从全校1200名学生中随机选取一部分学生进行调查,调查情况:A:上网时间
小时;B:1小时<上网时间
小时;C:4小时<上网时间
小时;D:上网时间>7小时.统计结果制成了如图统计图:
(1)参加调查的学生有人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.
相关试题