【题目】从全校1200名学生中随机选取一部分学生进行调查,调查情况:A:上网时间
小时;B:1小时<上网时间
小时;C:4小时<上网时间
小时;D:上网时间>7小时.统计结果制成了如图统计图:![]()
(1)参加调查的学生有人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.
参考答案:
【答案】
(1)200人
(2)解:C的人数是:200﹣20﹣80﹣40=60(人),补图如下:
![]()
(3)解:根据题意得: 1200×
=960(人),
【解析】(1)根据统计图中A的数值求出参加调查的学生的人数;(2)根据条形统计图中A、B、D的人数,求出C的人数,将条形统计图补全;(3)由全校1200名的学生数,求出全校上网不超过7小时的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.
(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 ;
(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 ;
(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.

(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在边长为4cm正方形 ABCD 中,点P从点A出发,沿AB→BC的路径匀速运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时图象如图②所示.当P运动2.5s时,PQ的长为( )


A.
cmB.
cmC.
cmD.
cm -
科目: 来源: 题型:
查看答案和解析>>【题目】九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.
(1)甲、乙两队单独完成各需多少天?
(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )

A. 15尺B. 16尺C. 17尺D. 18尺
相关试题