【题目】已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.![]()
初步感知:
(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
参考答案:
【答案】
(1)
①证明:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,
∴AD=AF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴∠ADB=∠AFC,
②解:∠AFC=∠ACB+∠DAC成立.理由如下:
∵△ABD≌△ACF,
∴∠ADB=∠AFC,
∵∠ADB=∠ACB+∠DAC,
∴∠AFC=∠ACB+∠DAC
问题探究:
(2)
解:∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.理由如下:
∵△ABC为等边三角形,
∴AB=AC,
∠BAC=60°,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,
∴AD=AF.
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS).
∴∠ADB=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB﹣∠DAC
类比分析:
(3)
解:补全图形如图所示:
![]()
∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC+∠DAC+∠ACB=180°;理由如下:
同(2)得:△ABD≌△ACF,
∴∠ADC=∠AFC,
∵∠ADC+∠ACB+∠DAC=180°,
∴∠AFC+∠DAC+∠ACB=180°.
【解析】(1)①由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判断两三角形全等得出∠ADB=∠AFC;②由全等三角形的性质和三角形的外角性质即可得出结论;(2)此题应先判断得出正确的等量关系,然后再根据△ABD≌△ACF即可证明;(3)补全图形后由图形,由全等三角形的性质和三角形内角和定理即可得出∠AFC、∠ACB、∠DAC之间存在的等量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么这两次拐弯的角度是( )
A. 第一次向右拐40, 第二次向左拐140
B. 第一次向左拐40, 第二次向右拐40
C. 第一次向左拐40, 第二次向左拐140
D. 第一次向右拐40, 第二次向右拐40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.
⑴求证:四边形AECF是菱形.
⑵若AB=2,BF=1,求四边形AECF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】根据提示填空(8分)
如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.

因为EF∥AD
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°(_____________________)
因为∠BAC=80° 所以∠AGD=_______
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,OE把
分成两部分;(1)直接写出图中
的对顶角为 ,
的邻补角为 ;(2)若
,且
,求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).

(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线l:y=
x,点A1(0,1),过点A1作y轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交y轴于点A3 , …,按此作法进行下去,则OA2017= . 
相关试题