【题目】如图,直线AB、CD相交于点O,OE把
分成两部分;
(1)直接写出图中
的对顶角为 ,
的邻补角为 ;
(2)若
,且
,求
的度数.
![]()
参考答案:
【答案】(1)∠BOC,∠BOE;(2)138°
【解析】分析:(1)利用对顶角、邻补角的定义直接回答即可;
(2)根据对顶角相等和∠AOC:∠DOE=5:3,得到∠BOD:∠DOE=5:3,设∠BOD=5x,则∠DOE=3x,∠BOE=2x.求出x的值,即可得到结论.
详解:(1)∠AOD的对顶角为∠BOC,∠AOE的邻补角为∠BOE;
(2)∵∠AOC=∠BOD,∠AOC:∠DOE=5:3,∴∠BOD:∠DOE=5:3.
设∠BOD=5x,则∠DOE=3x,∴∠BOE=∠BOD-∠DOE=5x-3x=2x .
∵∠BOE=28°,∴2x=28°, ∴x=14°,
∴∠DOE=3x=3×14°=42°.
∵∠DOE+∠COE=180°,
∴∠COE=180°-∠DOE=180°-42°=138°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.
⑴求证:四边形AECF是菱形.
⑵若AB=2,BF=1,求四边形AECF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】根据提示填空(8分)
如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.

因为EF∥AD
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°(_____________________)
因为∠BAC=80° 所以∠AGD=_______
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.

初步感知:
(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).

(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线l:y=
x,点A1(0,1),过点A1作y轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交y轴于点A3 , …,按此作法进行下去,则OA2017= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF ;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.

相关试题