【题目】在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:
(1)从中任取一球,小球上的数字为偶数
(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=
的图象上.
参考答案:
【答案】
(1)
解:∵在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,
∴从中任取一球,球上的数字为偶数的概率是:![]()
(2)
解:
列表得:
1 | 2 | 3 | |
1 | (1,1) | (1,2) | (1,3) |
2 | (2,1) | (2,2) | (2,3) |
3 | (3,1) | (3,2) | (3,3) |
则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、
(3,1)、(3,2)、(3,3),积为3的有2种,
所以点A(x,y)在函数y=
的图象上概率为:
.
【解析】(1)由在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,直接利用概率公式求解即可求得答案;
(2)列表得出所有等可能的情况数,找出点(x,y)落在函数y=
的图象上的情况数,即可求出所求的概率.
【考点精析】解答此题的关键在于理解列表法与树状图法的相关知识,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率,以及对概率公式的理解,了解一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x,再由小华猜小丽刚才想的数字,把小华猜的数字记为y,且他们想和猜的数字只能在1,2,3,4这四个数中.
(1)请用树状图或列表法表示了他们想和猜的所有情况;
(2)如果他们想和猜的数相同,则称他们“心灵相通”.求他们“心灵相通”的概率;
(3)如果他们想和猜的数字满足|x﹣y|≤1,则称他们“心有灵犀”.求他们“心有灵犀”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.

(1)证明:CE=CF;
(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣
x﹣2(a≠0)的图像与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.

(1)求证:△ADE≌△CBF
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)
项目
人员教学能力
科研能力
组织能力
甲
86
93
73
乙
81
95
79

(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?

相关试题