【题目】“2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小明跑步的平均速度;
(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
参考答案:
【答案】(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.
【解析】
(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.
解:(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,
根据题意得:
-
=5,
解得:x=20,
经检验,x=20是原分式方程的解.
答:小明跑步的平均速度为20米/分钟.
(2)小明跑步到家所需时间为300÷20=15(分钟),
小明骑车所用时间为15-5=10(分钟),
小明从开始跑步回家到赶回奥体中心所需时间为15+10+4=29(分钟),
∵29<30,
∴小明能在演唱会开始前赶到奥体中心.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰直角三角形ABC中,
D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且
连接EF并取EF的中点O,连接DO并延长至点G,使
,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+b分别交x轴、y轴于A(1,0)、B(0,﹣1),交双曲线y=
于点C、D.(1)求k、b的值;
(2)写出不等式kx+b>
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)

(1)求收工时距A地多远?
(2)在第______次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EP、FG.

(1)如图1,直接写出EF与FG的关系____________;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.
①求证:△FFE≌△PFG;②直接写出EF、EH、BP三者之间的关系;
(3)如图3,若点P为CB延长线上的一动点,连接FP,按照(2)中的做法,在图(3)中补全图形,并直接写出EF、EH、BP三者之间的关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果点E、F、G、H分别是四边形ABCD四条边的中点,若EFGH为菱形,则四边形应具备的下列条件中,不正确的个数是( )
①一组对边平行而另一组对边不平行; ②对角线互相平分;③对角线互相垂直;④对角线相等
A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.

(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
相关试题