【题目】五张如图所示的长为
,宽为
的小长方形纸片,按如图的方式不重叠地放在矩形
中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为
,当
的长度变化时,按照同样的放置方式,
始终保持不变,则
,
满足的关系式为( )
![]()
A.
B.
C.
D.![]()
参考答案:
【答案】A
【解析】
表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式
解:左上角阴影部分的长为AE,宽为AF=2b,右下角阴影部分的长为PC,宽为a,
![]()
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=3b+PC,
∴AE+a=3b+PC,即AE-PC=3b-a,
∴阴影部分面积之差S=AEAF-PCCG=2b×AE-a×PC=2b(PC+3b-a)-aPC=(2b-a)PC+6b2-2ab,
则2b-a=0,即a=2b,
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C在线段AB上,△DAC和△DBE都是等边三角形.

(1)求证:△DAB≌△DCE;
(2)求证:DA∥EC. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是将抛物线
平移后得到的抛物线,其对称轴为
,与x轴的一个交点为A
,另一交点为B,与y轴交点为C.
(1)求抛物线的函数表达式;
(2)若点
为抛物线上一点,且BC⊥NC,求点N的坐标;
(3)点P是抛物线上一点,点Q是一次函数
的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标,若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】生活常识:射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.

(1)现象解释:如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.已知:∠1=55°,求∠4的度数.
(2)尝试探究:如图3,有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,若∠MON=46°,求∠CEB的度数.

(3)深入思考:如图4,有两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是 .(直接写出结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )

A.b2>4ac
B.ax2+bx+c≥﹣6
C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1 -
科目: 来源: 题型:
查看答案和解析>>【题目】某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别
A
B
C
D
频数
30
40
24
b
频率
a
0.4
0.24
0.06

(1)表中的a=________,b=________;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,过点 A(与 BC 在 AC 同侧)作射线 AN⊥AC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.
(1)经过 秒时,Rt△AMP 是等腰直角三角形?
(2)经过几秒时,PM⊥MB?
(3)经过几秒时,PM⊥AB?
(4)当△BMP 是等腰三角形时,直接写出 t 的所有值.

相关试题