【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.![]()
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
参考答案:
【答案】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,
∵DF⊥AG,BE⊥AG,
∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,
∴∠BAE=∠ADF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS).
(2)解:设EF=x,则AE=DF=x+1,
由题意2×
×(x+1)×1+
×x×(x+1)=6,
解得x=2或﹣5(舍弃),
∴EF=2.
【解析】(1)根据正方形的性质得出AB=AD,又根据垂直的定义及同角的余角相等得出∠BAE=∠ADF。然后根据AAS判断出△ABE≌△DAF;
(2)根据全等三角形对应边相等得出AE=DF,设EF=x,则AE=DF=x+1,根据四边形ABED的面积=S△ABE+S△AFD+S△DEF列出方程求解即可。
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是( )

A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.
(1)小明一共走了多少米?
(2)这个多边形的内角和是多少度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )

A.
B.2
C.3
D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的运算程序中,若开始输入的
值为5,可发现第一次输出的结果为8,第二次输出的结果为4,…,请你探索第2020次输出的结果为( )
A.2B.1C.6D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD是⊙O的直径,∠EOD=72°,AE交⊙O于点B,且AB=OC,求∠A的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°.
(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)
(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.

相关试题