【题目】如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.
![]()
(1)若设BE=a,CF=b,满足
+|b﹣5|=
+
,求BE及CF的长.
(2)求证:BE2+CF2=EF2.
(3)在(1)的条件下,求△DEF的面积.
参考答案:
【答案】(1)BE=12,CF=5;(2)见解析;(3)
.
【解析】
试题分析:(1)先根据二次根式的非负性求出m=2,再由非负数的性质求出a、b的值,进而得到BE及CF的长;
(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到△EDF和△PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;
(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC﹣CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.
(1)解:由题意得
,
解得m=2,
则
+|b﹣5|=0,
所以a﹣12=0,b﹣5=0,
a=12,b=5,
即BE=12,CF=5;
(2)证明:延长ED到P,使DP=DE,连接FP,CP,
在△BED和△CPD中,
,
∴△BED≌△CPD(SAS),
∴BE=CP,∠B=∠CDP,
在△EDF和△PDF中,
,
∴△EDF≌△PDF(SAS),
∴EF=FP,
∵∠B=∠DCP,∠A=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠DCP=90°,即∠FCP=90°,
在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,
∵BE=CP,PF=EF,
∴BE2+CF2=EF2;
(3)解:连接AD,
∵△ABC为等腰直角三角形,D为BC的中点,
∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,
∵ED⊥FD,
∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,
∴∠EDA=∠FDC,
在△AED和△CFD中,
,
∴△AED≌△CFD(ASA),
∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,
∴AB=AE+EB=5+12=17,
∴AF=AC﹣FC=AB﹣CF=17﹣5=12,
在Rt△EAF中,根据勾股定理得:EF=
=13,
设DE=DF=x,
根据勾股定理得:x2+x2=132,
解得:x=
,即DE=DF=
,
则S△DEF=
DEDF=
×
×
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,若点P关于x轴的对称点在第二象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为( )
A.(﹣3,﹣2)
B.(﹣2,﹣3)
C.(2,3)
D.(3,2) -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题正确的是( )
①三角形中最大内角一定不小于600;
② 所有等腰直角三角形都相似;
③正多边形的外角为240,则它的中心角也为240;
④顺次连接对角线相等的四边形各边中点得到矩形.
A. ①② B. ①②③ C. ②③④ D. ①②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是( )
A. 1,-3,10 B. 1,7,-10 C. 1,-5,12 D. 1, 3,2
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:
①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
②g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( )
A. 3 B. 4 C. 5 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程3x2=5x+2的二次项系数为_____,一次项系数为_____.
相关试题