【题目】如下图: ![]()
(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)
(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)
(3)比较图1与图2的阴影部分的面积,可得乘法公式 .
(4)利用所得公式计算:2(1+
)(1+
)(1+
)(1+
)+
.
参考答案:
【答案】
(1)a2﹣b2
(2)(a+b)(a﹣b)
(3)(a+b)(a﹣b)=a2﹣b2
(4)解:原式=4(1﹣
)(1+
)(1+
)(1+
)(1+
)+
=4(1﹣
)(1+
)(1+
)(1+
)+ ![]()
=4(1﹣
)(1+
)(1+
)+ ![]()
=4(1﹣
)(1+
)+ ![]()
=4(1﹣
)+ ![]()
=4﹣
+ ![]()
=4.
【解析】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2; 所以答案是:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D,F在线段AB上,点E,G分别在线段BC和AC上,CD∥EF,∠1=∠2.

(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=
(k≠o)的图象在第一象限交于点C,如果点B的坐标为(0,2).OA=OB,B是线段AC的中点.(l)求点A的坐标及一次函数解析式;
(2)求点C的坐标及反比例函数的解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小丽经过三次折叠发现了∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

-
科目: 来源: 题型:
查看答案和解析>>【题目】正数x的两个平方根分别为3﹣a和2a+7.
(1)求a的值;
(2)求44﹣x这个数的立方根.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一小球从斜坡D点处抛出,球的抛出路线可以用二次函数)y=-x2+4x刻画,斜坡OA可以用一次函数y=
刻画.(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积,请直接写出点M的坐标。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.

若AB=6cm,请回答下列问题:
(1)求图1中BC、CD的长及边框所围成图形的面积;
(2)求图2中m、n的值.
相关试题