【题目】如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.
![]()
(1)当x为何值时,直线AD1过点C?
(2)当x为何值时,直线AD1过BC的中点E?
(3)求出y与x的函数表达式.
参考答案:
【答案】(1)
;(2)
;(3)![]()
【解析】试题分析:(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;
(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E=
﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;
(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.
试题解析:解:(1)如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC=
=
,CD1=
﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(
﹣2)2,解得:x=
,∴当x=
时,直线AD1过点C;
![]()
(2)如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE=
=
,∵AD1=AD=2,PD=PD1=x,∴D1E=
﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(
﹣2)2=(3﹣x)2+12,解得:x=
,∴当x=
时,直线AD1过BC的中点E;
![]()
(3)①如图3,当0<x≤2时,y=x;
![]()
②如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a=
,所以y=
=
.
综合上述,
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题:大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
-1来表示
的小数部分,事实上,小明的表示方法是有道理的,因为
<
<
,所以
的整数部分是1,将这个数减去其整数部分,差就是小数部分.请据此解答:(1)
的整数部分是 ,小数部分是 .(2)如果
的小数部分为a,
的整数部分为b,求a+b-
的值;(3)若设2+
的整数部分为x,小数部分为y,求(y-x)2的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.
(1)请分别用含x的代数式表示y和W(把结果填入下表):
销售单价(元)
x
销售量y(件)
销售利润W(元)
(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)用“=”、“>”、“<”填空
; 6+3
;
;7+7
;(2)由(1)中各式猜想a+b与
的大小,并说明理由.(3)请利用上述结论解决下面问题:
某同学在做一个面积为1800cm2,对角线互相垂直的四边形风筝时,求用来做对角线的竹条至少要多少厘米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高
米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心
米.
(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD为△ABC中∠ BAC的外角平分线,BD⊥AD于D,E为BC中点,DE=5,AC=3,则AB长为()

A.8.5B.8C.7.5D.7
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0, d)、C(-3,2).
(1)求d的值;
(2)将△ABC沿
轴的正方向平移a个单位,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图像上.请求出这个反比例函数和此时直线B′C′的解析式;(3)在(2)的条件下,直线
交y轴于点G,作
⊥
轴于
.
是线段
上的一点,若△
和△
面积相等,求点
坐标.
相关试题