【题目】如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕 点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.
(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.
(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.
![]()
参考答案:
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)由正方形的性质可以得出AB=BC,∠ABP=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论;
(2)由正方形的性质可以得出AB=BC,∠FBC=∠ABC=∠90°,可以得出△PBA≌△FBC,由其性质就可以得出结论.
试题解析:(1)证明:∵在正方形ABCD中,AB=BC,∠ABC=∠ABP=90,
又∵BF=BP,
∴△BCF≌△BAP(SAS),
∴CF=AP,∠BFC=∠BPA.
又由旋转得:∠EPA=90,PA=PE,
∴PE=CF.∵∠BFC+∠BCF=90
∴∠BPA+∠BCF=90,
∴∠BPA+∠EPA+∠BCF=180,
∴PE∥CF.
∴四边形PCFE为平行四边形.
(2)四边形PCEF是平行四边形.
证明:同(1)得:△BCF≌△BAP,
∴∠BCF=∠BAP,AP=CF.
由旋转得:AP=PE,∠EPA=90,
∴PE=CF.
∴∠BPE+∠BPA=90,
∵在△ABP中,∠ABP=90
∴∠BAP+∠BPA=90,∠BPE=∠BAP,
∴∠BPE=∠BCF,
∴PE∥CF,
∴四边形PCFE为平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果两个锐角的和等于90°,那么我们就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,那么我们就可以称这两个角互为垂角.例如:∠1=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).
(1)如图,O为直线AB上一点,OC⊥AB于点O,OE⊥OD于点O ,请写出图中所有互为垂角的角:_______________________________________________________;
(2)如果一个角的垂角等于这个角的补角的
,求这个角的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是a,最小的积是b.
(1)求a,b的值;
(2)若|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0),(m,0),且1<m<2,当x<﹣1时,y随x增大而减小,下列结论: ①abc>0;
②a+b<0;
③若点A(﹣3,y1),B(3,y2)在抛物线上,则y1<y2;
④a(m﹣1)+b=0;
⑤c≤﹣1时,则b2﹣4ac≤4a.
其中结论正确的有 . -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校计划购买A、B两种品牌的显示器共120台,A、B两种品牌显示器的单价分别为800元和1000元,设购买A品牌显示器x台,若学校购买这两种品牌显示器的总费用为110000元,那么A、B两种品牌的显示器各购买了多少台?根据题目信息完成上面的表格,并列出方程,列出的方程: .
项目品牌
单价/元
购买数量/台
购买费用/元
A
800
x
B
1000
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(
)﹣2+(
﹣
)0+|
﹣1|+(
﹣3
)tan60°. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
相关试题