【题目】如图①,若二次函数y=
x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=
x的图象的对称点为C.![]()
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
x的图象于点D,连结AC,交正比例函数y=
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵点A(﹣2,0),B(3,0)在抛物线y=
x2+bx+c上,
∴
,
解得:b=﹣
,c=﹣ ![]()
(2)
解:设点F在直线y=
x上,且F(2,
).
如答图1所示,过点F作FH⊥x轴于点H,则FH=
,OH=2,
∴tan∠FOB=
=
,∴∠FOB=60°.
![]()
∴∠AOE=∠FOB=60°.
连接OC,过点C作CK⊥x轴于点K.
∵点A、C关于y=
x对称,∴OC=OA=2,∠COE=∠AOE=60°.
∴∠COK=180°﹣∠AOE﹣∠COE=60°.
在Rt△COK中,CK=OCsin60°=2×
=
,OK=OCcos60°=2×
=1.
∴C(1,﹣
).
抛物线的解析式为:y=
x2﹣
x﹣
,当x=1时,y=﹣
,
∴点C在所求二次函数的图象上
(3)
解:假设存在.
如答图1所示,在Rt△ACK中,由勾股定理得:AC=
=
=
.
如答图2所示,∵OB=3,∴BD=3
,AB=OA+OB=5.
在Rt△ABD中,由勾股定理得:AD=
=
=2
.
∵点A、C关于y=
x对称,
∴CD=AD=2
,∠DAC=∠DCA,AE=CE=
AC=
.
连接PQ、PE,QE,则∠APE=∠QPE,∠PQE=∠CQE.
![]()
在四边形APQC中,∠DAC+∠APQ+∠PQC+∠DCA=360°(四边形内角和等于360°),
即2∠DAC+2∠APE+2∠CQE=360°,
∴∠DAC+∠APE+∠CQE=180°.
又∵∠DAC+∠APE+∠AEP=180°(三角形内角和定理),
∴∠AEP=∠CQE.
在△APE与△CEQ中,∵∠DAC=∠DCA,∠AEP=∠CQE,
∴△APE∽△CEQ,
∴
,即:
,
整理得:2t2﹣
t+3=0,
解得:t=
或t=
(t<
,所以舍去)
∴存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,此时t= ![]()
【解析】(1)利用待定系数法求出b,c的值;(2)如答图1所示,关键是求出点C的坐标.首先求出直线y=
x与x轴所夹锐角为60°,则可推出在Rt△COK中,∠COK=60°,解此直角三角形即可求出点C的坐标;(3)如答图2所示,关键是证明△APE∽△CEQ.根据∠DAC=∠DCA,∠AEP=∠CQE,证明△APE∽△CEQ,根据相似线段比例关系列出方程,解方程求出时间t的值.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.

(1)现在实际购进这种水果每千克多少元?
(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系. ①求y与x之间的函数关系式;
②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出
的值(用含α的式子表示出来) -
科目: 来源: 题型:
查看答案和解析>>【题目】某市在招商引资期间,把已倒闭的机床厂租给外地某投资商,该投资商为减小固定资产投资,将原有的正方形场地改建成800平方米的长方形场地,且其长、宽的比为5:2.
(1)求改建后的长方形场地的长和宽为多少米?
(2)如果把原来面积为900平方米的正方形场地的金属栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2 , 则正八边形的面积为cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】
(1)计算:|﹣2|﹣
+(﹣2013)0;
(2)计算:(1+
)÷
.
相关试题