【题目】如图,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.
![]()
参考答案:
【答案】△FAE≌△ABC或△CDA,证明见解析.
【解析】
试题分析:∵∠BAD+∠EAF+∠FAB+∠EAD=360°,∠FAB=∠EAD=90°,∴∠BAD+∠EAF=180°∵四边形ABCD为平行四边形,∴∠BAD+∠ABC=180°,∴∠EAF=∠ABC(同角的补角相等)∵△ABF和△ADE都是等腰直角三角形,∴AF=AB,AE=AD又∵□ABCD中AD=BC(平行四边形的性质)∴AE=BC
∵在△FAE和△ABC中AF=AB,∠EAF=∠ABC,AE=BC,∴△FAE≌△ABC,又∵四边形ABCD为平行四边形△CDA≌△ABC∴△FAE≌△CDA
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与x、y轴交于点A(1,0),B(0,﹣1)与反比例函数y=
在第一象限内的图象交于点C,点C的纵坐标为1. 
(1)求一次函数的解析式;
(2)求点C的坐标及反比例函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,现有一张边长为4的正方形纸片
,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,BD=2AB,AC与BD相交于点O,点E、F、G分别是OC、OB、AD的中点.
求证:(1)DE⊥OC;
(2)EG=EF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?

相关试题