【题目】如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为 . ![]()
参考答案:
【答案】![]()
【解析】解:∵AB=3,BM=1,
∴AM=
,
∵∠ABM=90°,BN⊥AM,
∴△ABN∽△BNM∽△AMB,
∴AB2=AN×AM,BM2=MN×AM,
∴AN=
,MN=
,
∵AB=3,CD=3,
∴AC=
,
∴AO=
,
∵
,
,
∴
,且∠CAM=∠NAO
∴△AON∽△AMC,
∴
,
∴ON=
.
故答案为:
.
由条件可证得△ABN∽△BNM∽△ABM,且可求得AM=
,利用对应线段的比相等可求得AN和MN,进一步可得到
,且∠CAM=∠NAO,可证得△AON∽△AMC,利用相似三角形的性质可求得ON.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF;EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.
(1)求证:四边形EBCF是平行四边形.
(2)若∠BEC=90°,∠ABE=30°,AB=
,求ED的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与x、y轴交于点A(1,0),B(0,﹣1)与反比例函数y=
在第一象限内的图象交于点C,点C的纵坐标为1. 
(1)求一次函数的解析式;
(2)求点C的坐标及反比例函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,现有一张边长为4的正方形纸片
,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

相关试题