【题目】如图,AB是圆O的弦,OA⊥OD,AB,OD相交于点C,且CD=BD.
(1)判断BD与圆O的位置关系,并证明你的结论;
(2)当OA=3,OC=1时,求线段BD的长.
![]()
参考答案:
【答案】(1)见解析;(2)4
【解析】试题分析: (1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;
(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.
试题解析:
(1)证明:连接OB,
∵OA=OB,DC=DB,
∴∠A=∠ABO,∠DCB=∠DBC,
∵AO⊥OD,
∴∠AOC=90°,即∠A+∠ACO=90°,
∵∠ACO=∠DCB=∠DBC,
∴∠ABO+∠DBC=90°,即OB⊥BD,
则BD为圆O的切线;
(2)解:设BD=x,则OD=x+1,而OB=OA=3,
在RT△OBD中,OB2+BD2=OD2,
即32+x2=(x+1)2,
解得x=4,
∴线段BD的长是4.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为
,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形
的面积是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2﹣
x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】两条平行直线上各有
个点,用这
对点按如下的规则连接线段:①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当
时的情况,此时图中三角形的个数为0;图2展示了当
时的一种情况,此时图中三角形的个数为2;图3展示了当
时的一种情况,此时图中三角形的个数为4;试猜想当
时,按照上述规则画出的图形中,三角形最少有____个
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为 偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校举办了“创建文明城市知识”竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1590元,学校最多可以购买多少个足球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上
点、
点表示的数为
、
,则
、
两点之间的距离
;线段
的中点
表示的数为
.已知数轴上有
、
两点,分别表示的数为
和
,点
以每秒
个单位的速度沿数轴向右匀速运动,点
以每秒
个单位向左匀速运动.设运动时间为
秒(
)(
)运动开始前,
、
两点的距离为__________;线段
的中点
所表示的数为__________.(
)它们按上述方式运动,
、
两点两点经过多少秒会相遇,相遇点所表示的数是什么?
相关试题