【题目】如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)求直线A′B′所对应的函数表达式.
(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.
![]()
参考答案:
【答案】(1)y=
(2)![]()
【解析】
(1)先根据一次函数的解析式求出AB两点的坐标,再由图形旋转的性质求出
的坐标,用待定系数法求出直线
的解析式即可。
(2)直接根据三角形
的坐标,利用三角形的面积公式进行计算即可。
(1)∵直线y=﹣2x+4分别交x轴、y轴于点A、B,
∴点A、B的坐标分别为(2,0)、(0,4).
由旋转得,点A′、B′的坐标分别为(0,﹣2)、(4,0).
设直线A′B′所对应的函数表达式为y=kx+b.
∴![]()
解得![]()
∴直线A′B′所对应的函数表达式为y=
x-2
(2)依题意有![]()
解得![]()
∴点C的横坐标为![]()
∵A′B=4﹣(﹣2)=6,
∴S△A′BC=
A′B
x=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1.
(1)、试利用上述基本事实,解方程:2x2-x=0:
(2)、若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1中的BD和CE就是两条三分线.

(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(画出一种即可);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请在图3上画出示意图;
(3)在(2)的前提下,设∠C=x°,试求出x所有可能的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=ax+b的图象与反比例函数y=
图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
(3)在第二象限内,求不等式ax+b<
的解集(请直接写出答案).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=4x2﹣4ax+a2﹣2a+2,

(1)当a=0,2,4时,请在同一直角坐标系中画出对应函数图象的顶点,并画出a=2 时的函数图象;
(2)证明当a取任意实数时,顶点在一条确定的直线上;
(3)求(2)中的直线被抛物线y=4x2﹣4ax+a2﹣2a+2截得的线段长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD,AB=3,点E在线段AB上,AE=1连结DE,DE的垂直平分线交DE于点P,交DC的延长线于点Q,PQ交BC于点G,连结EQ,EQ交BC于点F,连结GE.

(1)求证:△ADE∽△PQD;
(2)求线段CQ的长;
(3)求∠EGB的正切值.
相关试题