【题目】△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.
![]()
参考答案:
【答案】(1)△A1B1C1如图所示见解析,C1(3,﹣2);(2)点D如图所示见解析,点D的坐标为(0,2).
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;
(2)确定出点B关于y轴的对称点B′,根据轴对称确定最短路线问题连接AB′,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可.
(1)△A1B1C1如图所示,C1(3,﹣2);
(2)点D如图所示,OD=2,
所以,点D的坐标为(0,2).
![]()
故答案为:(1)△A1B1C1如图所示见解析,C1(3,﹣2);(2)点D如图所示见解析,点D的坐标为(0,2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( )

A. 2个 B. 3个 C. 4个 D. 无数个
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)7﹣(﹣3)+(﹣5)
(2)﹣2.5÷
(3)﹣(﹣2)2﹣[(﹣6)2﹣4]
(4)

(5)3ab﹣4ab﹣(﹣2ab)
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为 ;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为
(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由
(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2
米处的点C出发,沿斜面坡度i=1:
的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈
,cos37°≈
,tan37°≈
.计算结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.
(1)求甲、乙型号手机每部进价多少元?
(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?
(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.
相关试题