【题目】如图,E 是 BC 的中点,DE 平分∠ADC.
(1)如图 1,若∠B=∠C=90°,求证:AE 平分∠DAB;
(2)如图 2,若 DE⊥AE,求证:AD=AB+CD.
![]()
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)延长 DE 交 AB 的延长线于 F,易得AB∥CD,∠CDE=∠F,又E 是 BC 的中点,可得E 是 BC 的中点,△CDE≌△BFE,可得DE=FE,由已知DE 平分∠ADC,可得∠CDE=∠ADE,∠ADE=∠F,AD=AF,可得结论.
(2)在 DA 上截取 DF=DC,连接 EF, 同理可得△CDE≌△FDE,可得CE=FE,∠CED=∠FED,又E 是 BC 的中点,可得FE=BE,可证得∠AEF=∠AEB,可得
△AEF≌△AEB 可得AF=AB,AD=AF+DF=AB+CD.
解:(1)如图 1,延长 DE 交 AB 的延长线于 F,![]()
∵∠ABC=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
又∵E 是 BC 的中点,
∴E 是 BC 的中点,
∴△CDE≌△BFE(AAS),
∴DE=FE,即 E 为 DF 的中点,
∵DE 平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADE=∠F,
∴AD=AF,
∴AE 平分∠DAB;
(2)如图 2,在 DA 上截取 DF=DC,连接 EF,![]()
∵DE 平分∠ADC,
∴∠CDE=∠FDE, 又∵DE=DE,
∴△CDE≌△FDE(SAS),
∴CE=FE,∠CED=∠FED, 又∵E 是 BC 的中点,
∴CE=BE,
∴FE=BE,
∵∠AED=90°,
∴∠AEF+∠DEF=90°,∠AEB+∠DEC=90°,
∴∠AEF=∠AEB, 又∵AE=AE,
∴△AEF≌△AEB(SAS),
∴AF=AB,
∴AD=AF+DF=AB+CD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+2m﹣1(m≠0)与平行于x轴的一条直线交于A,B两点.

(1)求抛物线的对称轴;
(2)如果点A的坐标是(﹣1,﹣2),求点B的坐标;
(3)抛物线的对称轴交直线AB于点C,如果直线AB与y轴交点的纵坐标为﹣1,且抛物线顶点D到点C的距离大于2,求m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别沿两条直线行走,并同时到达 D,E 两地,DA⊥AB,EB⊥AB,D,E 与路段AB 的距离相等吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知 A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)请在图中作出△ABC 关于 y 轴对称的△
,并求出△
的面积;(2)写出
、
的坐标
__________;
__________;(3)若△DBC 与△ABC 全等,则 D 的坐标为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)请你帮助学校设计所有可行的租车方案.
(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD 和 BE 是△ABC 的两条高,∠BCD=45°,BF=FC,BE与 DF、DC分别交于点 G、H,∠ACD=∠CBE.
(1)证明:AB=BC;
(2)判断 BH 与 AE 之间的数量关系,并证明你的结论;
(3)结合已知条件,观察图形,你还能发现什么结论?请写出两个(不与前面结论相同).

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列等式:
……(1)请写出第4个等式:________________;
(2)观察上述等式的规律,猜想第n个等式(用含n的式子表示),并验证其正确性.
相关试题