【题目】阅读理解并完成下面问题:
我们知道,任意一个正整数
都可以进行这样的因式分解:
(
是正整数),在
的所有这种分解中,如果
两因数之差的绝对值最小,我们就称
是
的最佳分解.并规定:
(其中
).例如:
可以分解成
,
或
,因为
,所以
是
的最佳分解,所以
.
(
)如果一个正整数
是另外一个正整数
的平方,我们称正整数
是完全平方数,若
是一个完全平方数,求
的值;
(
)如果一个两位正整数
,交换其个位数字与十位数字得到的新两位数减去原数所得的差为
,那么我们称这个两位正整数
为“吉祥数”,求符合条件的所有“吉祥数”;
(
)在(
)中的所有“吉祥数”中,求
的最小值.
参考答案:
【答案】(1)1;(2)
可取
,
,
,
,
,
,
;(3)![]()
【解析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;
(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;
(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最小值即可.
(
)∵
是完全平方数
∴
且![]()
∴![]()
(
)设正整数,则
,则
.
∵
.
.
.
∴
可取
,
,
,
,
,
,
.
(
)由(
)得.
∴
,
,
,
,
,
,
.
∵
.
∴
的最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图
可以解释完全平方公式:
.(
)如图
(图中各小长方形大小均相等),请用两种不同的方法求图
中阴影部分的面积(不化简):方法
:______________________.方法
:______________________.(
)由(
)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(
)已知
,
,请利用(
)中的等式,求
的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,直线
,另一直线交
于
,交
于
,且
,点
为直线
上一动点,点
为直线
上一动点,且
.(
)如图
,当点
在点
右边且点
在点
左边时,
的平分线交
的平分线于点
,求
的度数;(
)如图
,当点
在点
右边且点
在点
右边时,
的平分线交
的平分线于点
,求
的度数;(
)当点
在点
左边且点
在点
左边时,
的平分线交
的平分线所在直线交于点
,请直接写出
的度数,不说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2016的直角坐标顶点的坐标为( )

A.(8053,0)
B.(8064,0)
C.(8053,
)
D.(8064,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在暑假社会实践活动中,以每千克
元的价格从批发市场购进若干千克西瓜市场上去销售,在销售了
千克之后,余下的打折全部售完.销售金额
(元)售出西瓜的千克数
(千克)之间的关系如图所示.请你根据图像提供的信息完成以下问题:(
)求降价前销售金额
(元)与售出西瓜
(千克)之间的关系;(
)小明这次社会实践活动赚了多少钱?(
)若要使这次活动赚
元钱,问余下的西瓜应打几折销售完?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式
>
x﹣1.(1)当m=1时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
相关试题