【题目】如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
![]()
参考答案:
【答案】(1)、15cm;(2)、40°.
【解析】
试题分析:(1)、根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)、根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.
试题解析:(1)、∵DM、EN分别垂直平分AC和BC, ∴AM=CM,BN=CN,
∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB, ∵△CMN的周长为15cm, ∴AB=15cm;
(2)、∵∠MFN=70°, ∴∠MNF+∠NMF=180°﹣70°=110°, ∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°, ∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN, ∴∠A=∠ACM,∠B=∠BCN, ∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用科学记数法表示﹣0.0000064记为( )
A.﹣64×10﹣7
B.﹣0.64×10﹣4
C.﹣6.4×10﹣6
D.﹣640×10﹣8 -
科目: 来源: 题型:
查看答案和解析>>【题目】一艘观光游船从港口A处以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发生了求救信号,一艘在港口正东方向B处的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里/时的速度前往救援,求海警船到达事故船C处所需的大约时间.(参考数据:sin53°≈0.8,cos53°≈0.6)

-
科目: 来源: 题型:
查看答案和解析>>【题目】袋中装有除颜色外完全相同的2个红球和1个绿球.
(1)现从袋中摸出1个球后放回,混合均匀后再摸出1个球.请用画树状图或列表的方法,求第一次摸到绿球,第二次摸到红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,⊙O的半径为3,
的长为π.
(1)直线CD与⊙O相切吗?说明理由。
(2)求阴影部分的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第
秒或第
秒时,△PBQ为直角三角形.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取1 000名学生的数学成绩,下列说法正确的是( )
A. 2013年昆明市九年级学生是总体 B. 每一名九年级学生是个体
C. 1 000名九年级学生是总体的一个样本 D. 样本容量是1 000
相关试题