【题目】某弹簧挂上不超过20千克的物体后按一定规律伸长,测得一弹簧的长度
(厘米)与所挂的物体的质量
(千克)有下面的关系:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 | 16 |
那么弹簧的总长
(厘米)与所挂的物体的质量
(千克)之间是否是函数关系?若是,请写出函数关系式.
参考答案:
【答案】是,![]()
【解析】
根据函数的定义即可进行判断;由于所挂物体质量每增加1千克,弹簧长度伸长0.5cm,可判断y与x成一次函数关系,然后利用待定系数法求解即可.
解:由表格可得:对于x的每一个值,y都有唯一的一个值与其对应,且所挂物体质量每增加1千克,弹簧长度伸长0.5cm,所以弹簧的总长
(厘米)与所挂的物体的质量
(千克)之间是函数关系,且成一次函数关系;
设
,把x=0,y=12和x=1,y=12.5代入,得:
,解得:
,
∴y与x的函数关系式为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点 A,B,C 的坐标分别是(2,1),(6,1),(3,5),若△A1B1C1 与△ABC 关于x 轴对称

(1)在平面直角坐标系中画出△A1B1C1,并写出 A1,B1,C1 三个点的坐标
(2)求出△A1B1C1的面积
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,连接BD,CE 相交于点 F,则∠BFC= °
(2)如图 2,△ABC 和△ADE 都是等边三角形,连接 BD,CE 相交于点 F,则∠BFC= °
(3)如图 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接 BD,CE相交于点 F,请猜想∠BFC 与∠BAC 有怎样的大小关系?请证明你的猜想

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 1,在平面直角坐标系中,A,B,D 三点的坐标是(0,2),(-2,0),(1,0),点C 是 x 轴下方一点,且 CD⊥AD,∠BAD+∠BCD=180°,AD=CD

(1)求证:BD 平分∠ABC
(2)求四边形 ABCD 的面积
(3)如图 2,BE 是∠ABO 的邻补角的平分线,连接 AE,OE 交 AB 于点 F,若∠AEO=45°,求证:AF=AO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点(﹣2,y1),(﹣5
,y2),(1
,y3)在函数y=2x2+8x+7的图象上,则y1,y2,y3的大小关系为_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论是___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“十一”黄金周的某一天,小王全家上午8时自驾小汽车从家里出发,到“番茄农庄”游玩,小汽车离家的距离
(千米)与小汽车离家后时间
(时)的关系可以用图中的折线表示,根据图像提供的有关信息,解答下列问题:
(1)“番茄农庄”离家________千米;
(2)小王全家在“番茄农庄”游玩了________小时;
(3)去时小汽车的平均速度是________千米/小时;
(4)回家时小汽车的平均速度是________千米/小时.
相关试题