【题目】如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.猜想:BF与AC的关系,并证明.
![]()
参考答案:
【答案】BF=AC且BF⊥AC,证明见解析.
【解析】试题分析: 首先求出∠ADC=∠BDF=90°,根据SAS证△ADC≌△BDF,根据全等三角形的性质推出FB=AC;根据三角形的内角和定理求出∠FBD+∠BFD=90°,推出∠AFE+∠EAF=90°,在△AFE中,根据三角形的内角和定理求出∠AEF=90°,可得BF⊥AC.
解:BF=AC且BF⊥AC.
∵AD⊥BC,
∴∠ADC=∠BDF=90°,
∵在△ADC和△BDF中,
,
∴△ADC≌△BDF(SAS),
∴∠FBD=∠CAD,
BF=AC;
∵∠BDF=90°,
∴∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
由(1)知:∠FBD=∠CAD,
∴∠CAD+∠AFE=90°,
∴∠AEF=180°﹣(∠CAD+∠AFE)=90°,
∴BF⊥AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】Rt△ABC中,∠A=90°,角平分线AE、中线AD、高线AH的大小关系是( )
A.AH<AE<AD
B.AH<AD<AE
C.AH≤AD≤AE
D.AH≤AE≤AD -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )

A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC= 度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能确定△ABC是直角三角形的条件有( )
A. 1个 B. 2个 C. 3个 D. 4个
相关试题