【题目】Rt△ABC中,∠A=90°,角平分线AE、中线AD、高线AH的大小关系是( )
A.AH<AE<AD
B.AH<AD<AE
C.AH≤AD≤AE
D.AH≤AE≤AD
参考答案:
【答案】D
【解析】①Rt△ABC中,AB=AC;(图①)![]()
根据等腰三角形三线合一的性质知:
AD、AH、AE互相重合,此时AD=AH=AE;
②Rt△ABC中,AB≠AC;(设AC>AB , 如图②)
在Rt△AHE中,由于AE是斜边,故AE>AH;
同理可证AD>AH;
∵∠AED>∠AHD=90°,∠ADH<∠AHE=90°
∴∠AED>∠ADE;
根据大角对大边知:AD>AE;
即AD>AE>AH;
综上所述,角平分线AE、中线AD、高线AH的大小关系是AH≤AE≤AD;
故选D.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)).
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形中,两腰和底的长分别是10和13,求三角形的三个内角的度数(精确到1′) .
-
科目: 来源: 题型:
查看答案和解析>>【题目】满足下列条件的△ABC , 不是直角三角形的是( )
A.∠C=∠A+∠B
B.a:b:c=3:4:5
C.∠C=∠A-∠B
D.∠A:∠B:∠C=3:4:5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )

A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.猜想:BF与AC的关系,并证明.

相关试题