【题目】已知等腰三角形的两边分别为6和3,则此等腰三角形周长为____;已知等腰三角形的一个内角为50°,则它的顶角为____.
参考答案:
【答案】15 50°或80°
【解析】
空1:有两种情况(6是腰和3是腰),先依据三角形的三边关系判断能否构成三角形,若能计算周长;
空2:有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.
解:空1:因为等腰三角形的两边长分别为6和3.
当三边长为3、3、6时,
∵3+3=6
所以不能构成三角形,
当三边长为3、6、6时,能构成三角形,其周长为6+6+3=15;
空2:如图所示,△ABC中,AB=AC.
![]()
有两种情况:
①顶角∠A=50°;
②当底角是50°时,
∵AB=AC,
∴∠B=∠C=50°,
∵∠A+∠B+∠C=180°,
∴∠A=180°50°50°=80°
∴这个等腰三角形的顶角为50°和80°.
故本题第一个空填:15,第二个空填:50°和80°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为( )

A. 13 B. 14 C. 15 D. 16
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用
,
表示直角三角形的两直角边
,下列四个说法:①
;②
;③
;④
;其中说法正确的是


A. ①②B. ①②③C. ①②④D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )

A.3B.4C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩
人数
频数
百分比
频率
0
5

10
5
15

20
5

根据表中已有的信息,下列结论正确的是

A. 共有40名同学参加知识竞赛
B. 抽到的同学参加知识竞赛的平均成绩为10分
C. 已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D. 抽到同学参加知识竞赛成绩的中位数为15分
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是 分米.

相关试题