【题目】如图,在边长为
的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
![]()
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由
增加到
时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为
,图中阴影部分的面积为
,写出
与
的关系式.
参考答案:
【答案】(1) 自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3)
.
【解析】
(1)根据定义确定自变量、因变量即可;
(2)根据题意计算即可;
(3)观察数据表格确定阴影面积变化趋势;
(4)阴影面积为正方形面积减去四个等腰直角三角形面积.
解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;
(2)等腰直角三角形直角边长为6时,阴影面积为202-4×
×62=328,
等腰直角三角形直角边长为9时,阴影面积为202-4×
×92=238;
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 328 | 238 |
(3)当等腰直角三角形的直角边长由
增加到
时,阴影部分的面积由
减小到
;
(4)
.
故答案为:(1) 自变量:三角形的直角边长,因变量:阴影部分的面积; (2)见解析; (3)
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】淮河汛期即将来临,防汛指挥部在一危险地带两岸各安置了-探照灯,便于夜间查看河面及两岸河堤的情况.如图,灯
射线自
顺时针旋转至
便立即回转,灯
射线自
顺时针旋转至
便立即回转,两灯不停交叉照射巡视.若灯
转动的速度是
/秒,灯
转动的速度是
/秒,且
满足:
是
的整数部分,
是不等式
的最小整数解.假定这- -带淮河两岸河堤是平行的,即
,且
.
(1)如图1,
_____,
;(2)若灯
射线先转动
秒,灯
射线才开始转动,在灯
射线到达
之前,
灯转动几秒,两灯的光東互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前。若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.
(1)若两种树苗购买的棵数一样多,求梨树苗的单价;
(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.
-
科目: 来源: 题型:
查看答案和解析>>【题目】1955年,印度数学家卡普耶卡(
)研究了对四位自然数的一种变换:任给出四位数
,用
的四个数字由大到小重新排列成一个四位数
,再减去它的反序数
(即将
的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数
,然后继续对
重复上述变换,得数
,…,如此进行下去,卡普耶卡发现,无论
是多大的四位数,只要四个数字不全相同,最多进行
次上述变换,就会出现变换前后相同的四位数
,这个数称为
变换的核.则四位数9631的
变换的核为______. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,两个等腰直角三角板
和
有一条边在同一条直线
上,
,
.将射线
绕点
逆时针旋转
,交直线
于点
.将图1中的三角板
沿直线
向右平移,设
、
两点间的距离为
.
解答问题:
(1)①当点
与点
重合时,如图2所示,可得
的值为 ; ②在平移过程中,
的值为 (用含
的代数式表示); (2)将图2中的三角板
绕点
逆时针旋转,原题中的其他条件保持不变.当点
落在线段
上时,如图3所示,计算
的值; 
(3)将图1中的三角板ABC绕点C逆时针旋转
度,
≤
,原题中的其他条件保持不变.如图4所示,请补全图形,计算
的值(用含k的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题:将边长为
的正三角形的三条边分别
等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有
个;边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有
个;边长为2的正三角形共有
个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)

结论:将边长为
的正三角形的三条边分别
等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是坐标原点,矩形OABC的顶点A,C分别在坐标轴上,点B的坐标为(4,2).直线
分别交AB,BC于点M,N,反比例函数
的图像经过点M.(1)求反比例函数的解析式;
(2)判断点N是否在反比例函数
的图像上?试说明理由. 
相关试题