【题目】已知二次函数y=
x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,与y轴交于点E,顶点为P,对称轴与x轴交于点D
(1)求这个二次函数的解析式;
(2)连接CP,△DCP是什么特殊形状的三角形?并加以说明;
(3)点Q是第一象限的抛物线上一点,且满足∠QEO=∠BEO,求出点Q的坐标.
参考答案:
【答案】
(1)
解:把A(﹣3,6),B(﹣1,0)代入y=
x2+bx+c,
得到
,
解得
,
∴二次函数解析式为y=
x2﹣x﹣
.
(2)
解:结论:△DCP是等腰直角三角形.
理由:对于抛物线y=
x2﹣x﹣
,令y=0,则
x2﹣x﹣
=0,解得x=﹣1或3,
∴点C坐标(3,0),
令x=0则y=﹣
,
∴点E坐标(0,﹣
),
∵y=
x2﹣x﹣
=
(x﹣1)2﹣2,
∴顶点P坐标(1,﹣2),点D坐标(1,0),
∴CD=PD=2,
∵∠PDC=90°,
∴△PDC是等腰直角三角形.
(3)
解:如图,连接BE、DE.
![]()
∵B(﹣1,0),D(1,0),E(0,﹣
),
∴OB=OD,OE=OE,∠BOE=∠DOE,
∴△EOB≌△EOD,
∴∠DEO=∠BEO,
∴直线DE与抛物线的交点即为所求的点Q.
设直线DE的解析式为y=kx+b,则有
,
解得
,
∴直线DE的解析式为y=
x﹣
,
由
解得
或
,
∴点Q坐标为(5,6)
【解析】(1)把A(﹣3,6),B(﹣1,0)代入y=
x2+bx+c,解方程组即可解决问题.(2)结论:△DCP是等腰直角三角形.求出C、D、E三点坐标即可解决问题.(3)如图,连接BE、DE.只要证明△EOB≌△EOD,得到∠DEO=∠BEO,所以直线DE与抛物线的交点即为所求的点Q.求出直线DE的解析式,解方程组即可.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有理数 a、b、c 在数轴上对应的点的位置,如图所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四个结论正确的有( )个

A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】某同学做一道数学题,已知两个多项式A、B,B=3x2y-5xy+x+7,试求A+B,这位同学把A+B看成A-B,结果求出的答案为6x2y+12xy-2x-9.
(1)请你替这位同学求出的正确答案;
(2)当x取任意数值,A-3B的值是一个定值,求y的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE,则DF与AC的数量关系是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市居民使用自来水按如下标准收费(水费按月缴纳):
户月用水量
单价
不超过12 m3的部分
a元∕m3
超过12 m3但不超过20 m3的部分
1.5a元∕m3
超过20 m3的部分
2a元∕m3
(1) 当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;
(2) 设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费_____________元(用含a、n的整式表示);
(3) 当a=2时,甲、乙两用户一个月共用水40 m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转得到△A1B1C,旋转角为ɑ(0°<ɑ<90°),连接BB1 . 设CB1交AB于点D,A1B1分别交AB,AC于点E,F.

(1)求证:△BCD≌△A1CF;
(2)若旋转角ɑ为30°,
①请你判断△BB1D的形状;
②求CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,BC是圆O的直径,点A,F在圆O上,连接AB,BF.

(1)如图1,若点A、F把半圆三等分,连接OA,OA与BF交于点E.求证:E为OA的中点;
(2)如图2,若点A为弧
的中点,过点A作AD⊥BC,垂足为点D,AD与BF交于点G.求证:AG=BG.
相关试题